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Nonlinear waves in a medium involving dissipation, dispersion, and enhancement  described by the 

generalized Kuramoto-Sivashinsky equation are discussed. Analytical solutions of the equation are obtained 

in the form of solitary waves. For numerical modeling of the nonlinear waves a difference scheme is 

suggested. Interaction of  nonlinear waves described by the Kuramoto-Sivashinsky model is considered. I t  

is shown that for specified values of  the problem parameters there is one solitary wave described by the initial 

mode l  The dependences of  the velocity and amplitude of  this wave on the problem parameters are 

determined. 

Introduction. One of the common nonlinear models used in describing wave processes is the model based 

on the generalized Kuramoto-Sivashinsky equation 

u t + uu x + CtUxx + flUxx x + YUxxxx = O. (1) 

This equation is used to investigate long waves in the flow of a thin liquid layer down an inclined plane [1, 2 ] and 

thermocapillary convection in thin liquid layers [3 ] and to describe the processes of instability and generation of 

turbulence in combustion [41. 
In the case fl = 0, Eq. (1) is one of the simplest relations describing turbulent processes in an active 

dissipative medium, and therefore it has been actively investigated in the last several years [5, 6 ]. 
For a > 0, y > 0 the term with the second derivative corresponds to pumping energy into the system, and 

the components with the third and fourth derivatives characterize its dispersion and dissipation, respectively. 

Below we present some analytical solutions of Eq. (1), a difference scheme for mathematical modeling of 

the nonlinear waves described by Eq. (1), and results of mathematical modeling of nonlinear waves. 

Analytical Solutions of Eq. (1). Equation (1) cannot be integrated by the method of the inverse scattering 

problem since it does not satisfy the Painleve property [7-9 ]; however it has some particular solutions. We introduce 

dimensionless variables in Eq. (1), setting 

u = a u ' ,  x =  /r/a x ' ,  t = 2} t ' ,  o = 

Then Eq. (1) acquires the form 

u t -t- u u  x + U x x  -t- CrUxx x + U x x x x  = 0 
(2) 

(the primes at the variables in (2) are omitted). 
We note that Eq. (2) is invariant relative to the substitution 

U---~ - -  U ,  X.--~ - -  X ,  0---~ - -  0 ,  (3) 

and therefore it will be considered below only for o > 0. 

We will seek a solution of Eq. (2) in the form 

Moscow State Engineering Physics Institute, Russia. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 

71, No. 1, pp. 149-154, January-February, 1998. Original article submitted June 30, 1996. 

1062-0125/98 / 7101-0147520.00 © 1998 Plenum Publishing Corporation 147 



y,o-I 
u (x,  t) = a o ~  + al + ... + %, 

where Y(x,  t) satisfies the system of equations [10 ] 

r x = _ ~ _  s 
2 '  

(4) 

(s) 

I ( s c  + Cxx ) , (6) r t =  c r ~  - c x r  + g 

and the variables C and S satisfy the consistency condition [10] 

S t + Cxx x + 2CxS + CS x = 0.  (7) 

With Eq. (5) taken into consideration, after substitution of u = ao P° into Eq. (2) we obtain p = 3, ao -- 120. 
Thus, a solution of (2) is sought in the form 

u =  120Y 3 + a l Y  2 + a x Y + a  3. (8) 

Substituting (8) into (2) and equating coefficients of the same power of Y to zero, we arrive at 

a 1 = - 15a,  (9) 

15 (16 - or2), a 2 = 60S + (10) 

Furthermore, we obtain a system of equations in S, C, and cr as a parameter: 

5 5 (16_cy2) S 1 ( ~ 1  87 2 ) - C x + 3 S x x + - ~ c y S  x + 2 S  2 + ~  ~ - - o  " 4 - ~ c y  + l l  ---0, 

(11) 

(12)  

Sxx x + gc~Sxx + 3SS  x + ~ -~ - o r  ~ a 2 -  = 0 ,  (13) 

(7 5 ( 1 6 - a  2) S x x - 2 S 2 x + ( C - a S ) S  x + 2 S C  x = O  St + Sxxxx + 2 Sxxx - 2SSxx + 304  (14) 

cy ) 225 2 

- l SS~S 2 + ~ - - o  - 1 s ~ s  + 15C~Sx + ~ [2-b-gg ° - T f g  ° + 17 s x 

[9( +--os3+737 [52o +3 - s a  T 3 2  ° 2 .  s +  

(2:7o6 16003 4 97037 2 ) + . . . .  o + - 77328 = 0 
1523 2 2 " 

+ 

(15) 
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TABLE 1. Solutions of System of Equations (17)-(19) 

a 0 0 12/4-47 16/vrTJ 

S - 1 1 / 3 8  1/38 - 1 / 9 4  - 1 / 1 4 6  

TABLE 2. Analytical Solutions of Eq. (2), ~ = k / 2 ( x  - Ct) 

4 

- I / 2  

4 

1/2  

a k Analytical solution 

0 

0 

12/4-47 

16/473- 

4 

4 

1/dl'9- 

1 / ¢-4-7 

1/473- 

1 

I 

C + lSkatanh (~)(tanh 2 (~) - 9 / 1 1 )  

C + lSkatan (~)(tan 2 (~) + 3) 

C + 15k3{Itanh (~) - 1 ]3 + 4} 

C + 15k3{tanh (~) [tanh 2 (~) + S 1 + 4 cosh 2 (~)} 

C + 4  - 15k3[1 + tan (~) ]cos 2 (~) 

C - 6 + 15k3[1 - tanh (~) ]cosh 2 (~) 

The last system of equations is overdetermined in the general case; however it is consistent  for some classes of 

functions. Setting in (12)-(15) 

S x = C  x = S  t = C  t = O ,  (16) 

we obtain the following system of algebraic equations: 

,(16 ('6-8 2s2 + ~3~ - 7 - ~  4 87 2 ~ (17) a - - - ~ a  + 11) = 0 ,  

- a a 2 - = O, (18) 

_ ~ a S 3 +  1_~2 [89 2 + 3 )  $2 - _ 2 

a ( 2 : 7  6 16003 4 97037 2 ) (19) + - -  a - - a  + a - 7 7 3 2 8  = 0 ,  
1523 2 2 

solutions of which for C -- const are given in Table 1. System (5), (6) is t ransformed to a linear form by the 

substitution Y = Wx/W: 

S (20) 
Wxx + ~- • = 0 ,  

C X 
ttt t + Cql x - - ~ - q / =  0 ,  

which for conditions (16) gives the solution 

(x , t )  = C t exp ( x -  Ct) + C 2exp  - 

(21) 

(22) 
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Fig. 1. Interaction of soli tary wave (27) with a dis turbance having the form 

u(x )  = 15 cosh-Z{8(x - 3)} at the initial moment:  1) interaction with the 

disturbance;  2) analytical  solution without interaction. 

where k 2 = - 2 S ;  CI and C2 are arb i t rary  constants.  

Passing from the function W(x, t) in the form (22) to Y = t t t x / t~ ,  we arrive at the following solution Eq. 

(2): 

where Y = (k /2 ) t anh  { k / 2 ( x  - Ct) + ~o0}, C and ~o 0 are  a rb i t ra ry  constanls ,  and a and S are  given in Table  1. 

Formula (23) reflects the fact that Eq. (2) is invariant relative to Galilean t ransformat ions  

(u,  x,  t) --, (u + c ,  x - Ct ,  t ) .  (24) 

Table  2 gives solutions of Eq. (2) for part icular  values of cr and k = -vr'2-I SI and ~o0 = 0. 

From formula (23) we can find the asymptotic form of the solution obtained: 

u - * C + - ~  7 - - - a  2 5 2 15 (25) - ~ c r k  ( 1 6 - c r Z )  k as x ~ + a o  
152 

where k = ~s-2-E. Expression (25) is valid only for S < 0 from Table  1. The  other  solutions, cor responding  to 

S > 0 from Table  1, are periodic and,  moreover,  are singular at ~ = +_n/2 and, consequently,  do not t end  to a limit 

a s  X ---~ -+- oo. 

The  particular solutions obtained were used to test a numerical  algorithm in mathemat ical  modeling of 

physical processes described by Eq. (1) for a rb i t rary  parameters  a ,  fl, Y. 

Numerical  Modeling of  Nonl inear  Waves Described by Eq. (1). For  this, use is ma d e  of an  implicit 

difference scheme of the following form with order  of approximation 0(3)  + O(h2): 

n + l  n 
uj - u i 1 n 2 n 

r + T ~  I ( u j + l )  - ( u j - l ) 2 l  + 

(X . n + l  ~ n + l  n + l ,  /~ . n + l  ~ n + l  ,., n + l  n + l  
+ ~uj+ l - z u j  + u j _ l ) + - - ~ u j +  2 - z . u j +  1 + z u j _  l - u j _ 2 ) +  

2h 2 4h 3 
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Fig. 2. Evolut ion  of a wave specif ied at t = 0 by  the  express ion  u(x )  = A 

cosh  - 2  ( k x / 2 )  {1 - t anh  ( k x / 2 ) } :  a) A = 12, k - -  1; b) A = 15, k - -  0.4; d a s h e d  

l ine - so l i tary  wave for  a = 4, A = 15, k -- 1. 

+ y . n + l  . n + l  n + l  , n + l  n + l .  
(uj+ 2 - suj+ 1 + 6uj  - ~uj_  1 + u j _ 2 )  = 0  

2h 4 
(26) 

T h e  convergence  of  the  numer ica l  so lut ion ob ta ined  by  scheme (26) to an  accura t e  solut ion of  Eq. (1) d e p e n d s  on  

a = f l / v ~ .  For  ins tance ,  for  a -- 0 d i f ference  s cheme  (26) is appl icable  for  z <__ h 2, while for  o = 4 t he  c o n s t r a i n t  

is m o r e  r igorous:  r ___ h 3. 

Numer ica l  mode l ing  of  the  p ropaga t ion  of  a wave specif ied at t = 0 by  the express ion  

u (x) = 15 cosh  - 2  ( x / 2 )  { 1 - t a n h  ( x / 2 ) } ,  (27) 

showed  that  for  a = 4 it ma in t a ins  its shape  a n d  p ropaga tes  with the  veloci ty C = 6. Its profi le co inc ides  wi th  the  

ana ly t ica l  solut ion f rom Tab le  2 for  cr = 4, C = 6 within the ent i re  per iod  of  calculat ion.  We inves t iga t ed  the  

in te rac t ion  of sol i tary  wave (27) with o the r  d i s tu rbances .  Figure  1 i l lus t ra tes  the  in te rac t ion  of this wave  wi th  a 

d i s tu rbance  that  has  the  fo rm u ( x )  = 15cosh - 2  {8(x - 3)} at  t -- 0. As is seen,  the sol i tary  wave o v e r t a k e s  the  

d i s tu rbance ,  in terac ts  with it, a n d  con t inues  to p ropaga te  with the  same  veloci ty  wi thout  c h a n g i n g  its s h a p e  but  

with a change  in the  phase  c o m p a r e d  to p ropaga t ion  wi thout  collision. T h u s ,  sol i tary wave (27) moves  wi th  a 

cons tan t  velocity wi thou t  c h a n g i n g  its shape  and  in teracts  elast ical ly with o the r  d i s tu rbances ,  a n d  c o n s e q u e n t l y  it 

is a classical  soliton. 

T h u s ,  Eq. (1) with n o n z e r o  a ,  fl, y has  a sol i ton solut ion,  but  it is un ique  for  a given set  of  p a r a m e t e r s  a 

= f l / ¢ - ~  since the o the r  d i s t u rba nc e  changes  with t ime, its ampl i tude  increases ,  and  for suff ic ient ly  la rge  t imes  of  

151 



C 

8 

6 

Cl 

15 

10 

5 

b A 

Fig. 3. Amplitude A and velocity C of the soli tary wave as a function of a: a) 

A(a) ;  b) C ( a ) .  

calculation the dis turbance acquires the form (27). However,  the process of growth of the ampl i tude  of the sol i tary 

wave does not depend on the interaction. 

If, as the initial condition, we take a soli tary wave with an ampl i tude  smaller  than (27), this wave will grow 

with time until its ampli tude reaches the ampli tude of solitary wave (27) (see Fig. 2a). On the o ther  hand ,  if at  the 

initial moment  the ampli tude of the wave is larger than that of the soliton solution corresponding to the given (7, 

then this wave will break into parts that over time, some earlier,  some later,  grow to wave (27). 

A similar si tuation is observed if at the initial moment  of t ime the width of the wave is larger  t han  the 

width of the soliton corresponding to the given or. Figure 2b illustrates the evolution, for cr = 4, of the solut ion 

u (x) = 15 cosh -2  (0 .4x /2 )  {I - tanh ( 0 . 4 x / 2 ) } ,  

This wave also breaks into parts, thus leading to formation of three waves, two of which have the form (27). The  

dashed curve represents  the exact solution of Eq. (1) for o = 4. 

It should be noted that this picture is observed for various (r: all waves that exist in the sys tem,  t ransforming  

in some way, tend to acquire the shape of the soliton corresponding to the given part icular  a. 

We investigated the behavior of a wave as a function of a. It is tu rned  out that the ampl i tude  of a soliton 

increases with a, the velocity of propagation of the wave also increases.  Figure 3 shows the ampl i tude  a n d  velocity 

of a soliton as a function of a for zero boundary  conditions. 

To sum up, analytical solutions of Eq. (1) are obta ined in form of solitary waves. With the aid of d i f ference 

scheme (26) the interaction of a Solitary wave with other  solutions is investigated. The  formation of sol i tary  waves 

at different cr is considered.  Dependences of the ampli tude and velocity of a solitary wave on the pa rame te r  a are  

determined.  

The  work was carried out with the support  of project M N T T s  V23-96. 

N O T A T I O N  

u ( x ,  t), function characterizing the deviation of the displacement ,  temperature ,  concentra t ion,  etc. from 

equilibrium; a ,  ~6, 7, constant  coefficients of intensification, dispersion, and dissipation, respectively; (7 = f l / V ~ ,  
n + l  dimensionless combinat ion of them; x, coordinate;  t, time; uj  , value of u at x j  = j h ,  t n+l  = (n  + 1)z; ~7, t ime step; 

h, coordinate step. 
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